CARBON-13 NUCLEAR MAGNETIC RESONANCES OF COBALT(III) COMPLEXES CONTAINING AMINO-ACIDS

Tomoharu AMA and Takaji YASUI

Faculty of Arts and Sciences, Kochi University, Asakura, Kochi 780

The 13 C-NMR spectra of α -amino-acids and their trans(0)-[Co en₂-(aaH)₂]³⁺ complex ions were measured. The changes in chemical shift on protonation of carboxyl anion group of amino-acids were 2.5~3.2 ppm and 1.1~2.1 ppm upfield for the carboxyl carbons and α -carbons, and on coordination of carboxyl group to the cobalt(III) ion 3.8~4.4 ppm downfield and almost zero for the former and latter carbons, respectively.

Recently the studies of carbon-13 nuclear magnetic resonance have been developed and their data give us many informations about the structures of organic compounds. On the other hand, these studies concerning cobalt(III) complexes (d⁶ low spin type, diamagnetic) are few. 3 - 6)

In this paper, we will discuss the comparison of Δ_{coord} values (difference in the chemical shift between the amino-acid in neutral aqueous solution and the amino-acid coordinating to cobalt(III) ion with its carboxyl group) with Δ_{proton} values (difference in the chemical shift between the amino-acid in neutral solution and the amino-acid in acidic solution).

The trans(0)-[Co en₂(aaH)₂]Cl₃ complexes used for the measurements were synthesized according to the method of Yasui et al.⁷⁾ ¹³C-NMR spectra were recorded on a JEOL-MH 100 spectrometer in pulse Fourier transform/proton noise decoupled mode at 25.15 MHz and at room temperature. Peak positions were measured relative to external benzene, and D₂O is used as solvent of the samples. For the measurements of the protonated samples, the solutions were acidified with 50% D₂SO₄ solution. Chemical shifts are reported relative to TMS using the relation $\delta_{\text{TMS}} = \delta_{\text{benzene}}$ - 128.5 ppm.

The chemical shifts for the carboxyl carbon (C-1) and the neibouring α -carbon (C-2) are shown in Table 1 and 2, respectively. The Δ_{proton} and Δ_{coord} values

of the C-1 and C-2 carbons are also listed in Tables.

The C-1 resonances of various α -amino-acids in neutral solutions were found in the range 174.0 to 177.3 ppm. However, the resonances of the β - and γ -amino-acids were observed in the range 179.9 to 183.1 ppm. These resonances shifted upfield in acidic solutions, that is, the $\mathbf{\Delta}_{\text{proton}}$ values of the C-1 carbons are -2.8 \pm 0.4 ppm for the α -amino-acids and -4.1 \pm 0.4 ppm for the β - and γ -amino-acids. In contrast, the resonances of the C-1 carbons in the unidentate amino-acids (in trans(0)-[Co en_2(aaH)_2]^{3+}) shifted downfield, that is, their $\mathbf{\Delta}_{\text{coord}}$ values are +4.1 \pm 0.3 ppm. In the case that the α -amino-acid forms five membered chelate ring, the downfield shift of the C-1 carbon resonance is considerably large. For example, the shifts of the C-1 carbons for the two diastereomers of $[\text{Co}(\text{L-ala})\text{en}_2]^{2+}$ are 13.0 and 13.5 ppm downfield. Therefore, the big difference of $\mathbf{\Delta}_{\text{coord}}$ value for the C-1 carbon resonances between the unidentate and bidentate amino-acids will give us a usefull information to know the coordinating form of the amino-acid in cobalt(III) complexes.

Similar Δ_{proton} and Δ_{coord} values were found for the free γ -carboxyl carbon (C-1) of the bidentate L-glutamate anion in $\Lambda(+)_D$ -[Co(L-glu)en₂]⁺ ion. That is, the C-1 carbon resonances in $\Lambda(+)_D$ -[Co(L-gluH)en₂]²⁺ and $(+)_D$ -trans(0)-[en₂Co{(L-glu)Co en₂}₂]⁵⁺ ions showed upfield shift of 4.8 ppm and downfield shift of 3.9 ppm, respectively. In $\Lambda(+)_D$ -[Co(L-asp)en₂]⁺ ion, however, the Δ_{proton} value of the free β -carboxyl carbon (C-1) is small (-2.5 ppm) and the Δ_{coord} value is large (+5.3 ppm). This may arise from that the free β -carboxyl of the $\Lambda(+)_D$ -[Co(L-asp)en₂]⁺ ion forms hydrogen-bond with intra-molecular NH₂ protons in aqueous solution 9) and that the hydrogen-bond is broken by protonation or by coordination of the β -carboxyl group.

The resonance for the C-2 carbon is also influenced by protonation of the carboxylate ion in an acidic solution. The Δ_{proton} values of the C-2 carbons for the α -amino-acids and for the β - and γ -amino-acids are -1.6 \pm 0.5 and -3.3 \pm 0.6 ppm, respectively. On the other hand, the resonance positions of these C-2 carbons are almost unchanged by coordination of the carboxyl groups to the cobalt(III) ion. In the case of the chelated α -amino-acid, the C-2 carbon resonance shifted to lower field side about 3 ppm (for example, the shifts of 3.3 and 2.6 ppm are observed for the two diastereomers of $[\text{Co}(\text{L-ala})\text{en}_2]^{2+}).8^{\circ}$

The following conclusions were obtained from the results of the present 13C-NMR data. The coordination of amino-acid through carboxyl group to the cobalt(III) ion,

Table 1.	¹³ C Chemical Sh	ifts and	Chemical	Shift	Changes	of	C-1	Carbons	in
	Amino-acids and	trans(0)	-[Co en_(aaH)]C13				

Compounds	-coo-		-соон	-cooco		
	δ (C-1)	& (C-1)	$\Delta_{\text{proton}}(C-1)$	δ (C-1)	∆ _{coord} (C-1)	
Glycine	174.1 ppm	171.6 ppm	- 2.5 ppm	177.9 ppm	+ 3.8 ppm	
L-Alanine	177.3	174.1	- 3.2	181.3	+ 4.0	
L-Serine	174.0	171.3	- 2.7	178.4	+ 4.4	
L-Valine	175.8	172.8	- 3.0	180.2	+ 4.4	
L-Proline	176.2	173.2	- 3.0	180.1	+ 3.9	
L-Hpro*1	175.8	172.8	- 3.0	179.7	+ 3.9	
β-Alanine	179.9	176.2	- 3.7	184.1	+ 4.2	
γ -Amb acid *2	183.1	178.6	- 4.5	187.5	+ 4.4	
Λ -[Co(L-asp)en ₂] ⁺	179.1	176.6	- 2.5	184.4*3	+ 5.3	
/-[Co(L-glu)en2]+	183.5	178.7	- 4.8	187.4*4	+ 3.9	

^{*1} L-Hpro = L-Hydroxyproline. *2 γ -Amb acid = γ -Aminobutylic acid.

 $^{1\,3}\text{C}$ Chemical Shifts and Chemical Shift Changes of C-2 Carbons in Table 2. Amino-acids and $trans(0)-[Co\ en_2(aaH)_2]Cl_3$

Compounds	-coo-	_	СООН	-C00Co		
	δ (C-2)	δ (C-2)	∆ _{proton} (C-2)	δ (C-2)	∆ _{coord} (C-2)	
Glycine	41.8 ppm	40.7 ppm	- 1.1 ppm	41.3 ppm	- 0.5 ppm	
L-Alanine	50.7	49.2	- 1.5	50.1	- 0.6	
L-Serine	56.7	55.2	- 1.5	56.1	- 0.6	
L-Valine	60.8	58.7	- 2.1	60.1	- 0.7	
L-Proline	61.7	59.8	- 1.9	61.0	- 0.7	
L-Hpro	60.4	58.9	- 1.5	59.6	- 0.8	
β -Alanine	33.7	31.0	- 2.7	34.1	+ 0.4	
γ-Amb acid	34.6	30.7	- 3.9	34.5	- 0.1	
Λ -[Co(L-asp)en ₂] ⁺	38.7	36.5	- 2.2	39 . 0 ^{*3}	+ 0.3	
Λ -[Co(L-glu)en ₂] ⁺	33.6	30.1	- 3.5	33.7*4	+ 0.1	

^{*3} Value for trans(0)-[en₂Co{(L-asp)Co en₂}₂]Cl₅ . *4 Value for trans(0)-[en₂Co{(L-glu)Co en₂}₂]Cl₅ .

forming the trans(0)-[Co en₂(aaH)₂]³⁺ complex ion, causes the downfield shift of the C-1 carbon resonance, and the $\Delta_{\rm coord}$ value has opposite sign to the $\Delta_{\rm proton}$ value of the C-1 carbon. The $\Delta_{\rm coord}$ value of the C-2 carbon is almost zero, while the $\Delta_{\rm proton}$ value of the C-2 carbon is a few ppm. The magnitude of the $\Delta_{\rm coord}$ of the C-1 and C-2 carbons can be used to distinguish whether the α -amino-acid in cobalt(III) complex is unidentate or bidentate.

References

- 1) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York (1972).
- A. R. Quirt, J. R. Lyerla, Jr., I. R. Peat, J. S. Cohn, W. F. Reynolds, and
 M. H. Freedman, J. Amer. Chem. Soc., <u>96</u>, 570 (1974).
- 3) M. Hirota, Y. Koike, H. Ishizuka, K. Yamasaki, and S. Fujiwara, Chem. Lett., 1973, 853.
- 4) T. E. Walker, H. P. C. Hogenkamp, T. E. Needham, and N. A. Matwiyoff, J. C. S. Chem. Comm., <u>1974</u>, 85.
- A. I. Scott, C. A. Townsend, K. Okada, M. Kajiwara, P. J. Whitman, and
 R. J. Cushley, J. Amer. Chem. Soc., <u>94</u>, 8267 (1972).
- 6) J. C. Hammel and J. A. S. Smith, J. Chem. Soc. (A), 1969, 2883.
- 7) a) T. Yasui, J. Hidaka, and Y. Shimura, Bull. Chem. Soc. Japan, <u>39</u>, 2417 (1966).
 - b) T. Yasui, H. Kawaguchi, Z. Kanda, T. Ama, Bull. Chem. Soc. Japan (to be published).
- 8) T. Ama, T. Yasui, unpublished work.
- 9) Y. Kojima and M. Shibata, Inorg. Chem., <u>12</u>, 1009 (1973).

(Received August 7, 1974)